面试题1:(答案)右偏分布
面试题2:(答案)C,正态分布的偏度为0,峰度为3
面试题3:(答案)C
面试题4:(答案)AC
相关系数
:考察两个事物(在数据里我们称之为变量)之间的相关程度。
如果有两个变量:X、Y,最终计算出的相关系数的含义可以有如下理解:
(1)、当相关系数为0时,X和Y两变量无关系。
(2)、当X的值增大(减小),Y值增大(减小),两个变量为正相关,相关系数在0.00与1.00之间。
(3)、当X的值增大(减小),Y值减小(增大),两个变量为负相关,相关系数在-1.00与0.00之间。
相关系数的绝对值越大,相关性越强,相关系数越接近于1或-1,相关度越强,相关系数越接近于0,相关度越弱。
通常情况下通过以下取值范围判断变量的相关强度:
相关系数 0.8-1.0 极强相关 0.6-0.8 强相关 0.4-0.6 中等程度相关 0.2-0.4 弱相关 0.0-0.2 极弱相关或无相关
ARMA相关资料
正偏态与负偏态
在正偏态分布中,为什么平均数大于中位数大于众数?在负偏态分布中,为什么众数大于中位数大于平均数?
(Skewness)用来度量分布是否对称。左右是对称的,偏度系数为0。较大的正值表明该分布具有右侧较长尾部。较大的负值表明有左侧较长尾部。偏度系数与其标准误的比值同样可以用来检验正态性。
峰度系数的概念:峰度系数是用来反映曲线顶端尖峭或扁平程度的指标。有时两组数据的、标准差和都相同,但他们分布曲线顶端的高耸程度却不同。
峰度系数(Kurtosis)用来度量数据在中心聚集程度。
在情况下,峰度系数值是3(但是SPSS等软件中将正态分布峰度值定为0,是因为已经减去3,这样比较起来方便)。
>3的峰度系数说明观察量更集中,有比正态分布更短的尾部;<3的峰度系数说明观测量不那么集中,有比正态分布更长的尾部,类似于矩形的均匀分布。
峰度系数的标准误用来判断分布的正态性。峰度系数与其标准误的比值用来检验正态性。如果该比值绝对值大于2,将拒绝正态性。